Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38496544

RESUMO

Cancer cells have been shown to exploit neurons to modulate their survival and growth, including through establishment of neural circuits within the central nervous system (CNS) 1-3 . Here, we report a distinct pattern of cancer-nerve interactions between the peripheral nervous system (PNS) and gastric cancer (GC). In multiple GC mouse models, nociceptive nerves demonstrated the greatest degree of nerve expansion in an NGF-dependent manner. Neural tracing identified CGRP+ peptidergic neurons as the primary gastric sensory neurons. Three-dimensional co-culture models showed that sensory neurons directly connect with gastric cancer spheroids through synapse-like structures. Chemogenetic activation of sensory neurons induced the release of calcium into the cytoplasm of cancer cells, promoting tumor growth and metastasis. Pharmacological ablation of sensory neurons or treatment with CGRP inhibitors suppressed tumor growth and extended survival. Depolarization of gastric tumor membranes through in vivo optogenetic activation led to enhanced calcium flux in nodose ganglia and CGRP release, defining a cancer cell-peptidergic neuronal circuit. Together, these findings establish the functional connectivity between cancer and sensory neurons, identifying this pathway as a potential therapeutic target.

2.
STAR Protoc ; 5(1): 102836, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38219150

RESUMO

Here, we present a protocol for rapidly isolating single cells from the mouse pancreas, minimizing damage caused by digestive enzymes in exocrine cells. We guide you through steps to optimize the dissection sequence, enzyme composition, and operational procedures, resulting in high yields of viable pancreatic single cells. This protocol can be applied across a wide range of research areas, including single-cell sequencing, gene expression profiling, primary cell culture, and even the development of spheroids or organoids. For complete details on the use and execution of this protocol, please refer to Jiang et al. (2023).1.


Assuntos
Pâncreas , Hormônios Pancreáticos , Animais , Camundongos , Dissecação , Células Epiteliais , Perfilação da Expressão Gênica
3.
Cell Mol Gastroenterol Hepatol ; 17(3): 321-346, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37898454

RESUMO

BACKGROUND & AIMS: The intestinal epithelium functions both in nutrient absorption and as a barrier, separating the luminal contents from a network of vascular, fibroblastic, and immune cells underneath. After injury to the intestine, multiple cell populations cooperate to drive regeneration of the mucosal barrier, including lymphatic endothelial cells (LECs). A population of granulocytic immature myeloid cells (IMCs), marked by Hdc, participate in regeneration of multiple organs such as the colon and central nervous system, and their contribution to intestinal regeneration was investigated. METHODS: By using male and female histidine decarboxylase (Hdc) green fluorescent reporter (GFP) mice, we investigated the role of Hdc+ IMCs in intestinal regeneration after exposure to 12 Gy whole-body irradiation. The movement of IMCs was analyzed using flow cytometry and immunostaining. Ablation of Hdc+ cells using the HdcCreERT2 tamoxifen-inducible recombinase Cre system, conditional knockout of Prostaglandin-endoperoxidase synthase 2 (Ptgs2) in Hdc+ cells using HdcCre; Ptgs2 floxed mice, and visualization of LECs using Prox1tdTomato mice also was performed. The role of microbial signals was investigated by knocking down mice gut microbiomes using antibiotic cocktail gavages. RESULTS: We found that Hdc+ IMCs infiltrate the injured intestine after irradiation injury and promote epithelial regeneration in part by modulating LEC activity. Hdc+ IMCs express Ptgs2 (encoding cyclooxygenase-2/COX-2), and enables them to produce prostaglandin E2. Prostaglandin E2 acts on the prostaglandin E2 receptor 4 receptor (EP4) on LECs to promote lymphangiogenesis and induce the expression of proregenerative factors including R-spondin 3. Depletion of gut microbes leads to reduced intestinal regeneration by impaired recruitment of IMCs. CONCLUSIONS: Altogether, our results unveil a critical role for IMCs in intestinal repair by modulating LEC activity and implicate gut microbes as mediators of intestinal regeneration.


Assuntos
Células Endoteliais , Intestinos , Células Mieloides , Regeneração , Animais , Feminino , Masculino , Camundongos , Ciclo-Oxigenase 2 , Prostaglandinas
4.
Sci Total Environ ; 904: 166799, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37673270

RESUMO

Airborne antibiotic-resistant bacteria (ARB) can critically impact human health. We performed resistome profiling of 283 personal airborne exposure samples from 15 participants spanning 890 days and 66 locations. We found a greater diversity and abundance of airborne bacteria community and antibiotic resistomes in spring than in winter, and temperature contributed largely to the difference. A total of 1123 bacterial genera were detected, with 16 genera dominating. Of which, 7/16 were annotated as major antibiotic resistance gene (ARG) hosts. The participants were exposed to a highly dynamic collection of ARGs, including 322 subtypes conferring resistance to 18 antibiotic classes dominated by multidrug, macrolide-lincosamide-streptogramin, ß-lactam, and fosfomycin. Unlike the overall community-level bacteria exposure, an extremely high abundance of specific ARG subtypes, including lunA and qacG, were found in some samples. Staphylococcus was the predominant genus in the bacterial community, serving as a primary bacterial host for the ARGs. The annotation of ARG-carrying contigs indicated that humans and companion animals were major reservoirs for ARG-carrying Staphylococcus. This study contextualized airborne antibiotic resistomes in the precision medicine framework through longitudinal personal monitoring, which can have broad implications for human health.


Assuntos
Antibacterianos , Genes Bacterianos , Humanos , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Bactérias
5.
Cell Stem Cell ; 30(8): 1091-1109.e7, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37541213

RESUMO

While adult pancreatic stem cells are thought not to exist, it is now appreciated that the acinar compartment harbors progenitors, including tissue-repairing facultative progenitors (FPs). Here, we study a pancreatic acinar population marked by trefoil factor 2 (Tff2) expression. Long-term lineage tracing and single-cell RNA sequencing (scRNA-seq) analysis of Tff2-DTR-CreERT2-targeted cells defines a transit-amplifying progenitor (TAP) population that contributes to normal homeostasis. Following acute and chronic injury, Tff2+ cells, distinct from FPs, undergo depopulation but are eventually replenished. At baseline, oncogenic KrasG12D-targeted Tff2+ cells are resistant to PDAC initiation. However, KrasG12D activation in Tff2+ cells leads to survival and clonal expansion following pancreatitis and a cancer stem/progenitor cell-like state. Selective ablation of Tff2+ cells prior to KrasG12D activation in Mist1+ acinar or Dclk1+ FP cells results in enhanced tumorigenesis, which can be partially rescued by adenoviral Tff2 treatment. Together, Tff2 defines a pancreatic TAP population that protects against Kras-driven carcinogenesis.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , Fator Trefoil-2/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Pâncreas/metabolismo , Células Acinares/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo
6.
J Oncol ; 2023: 6413796, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36778918

RESUMO

Background: Gastrointestinal stromal tumor (GIST) originates from a pacemaker cell, the Cajal cell. However, little is known about the cancer neuroscience in GIST. In this study, we aimed to elucidate the clinical and biological roles of adrenoceptor beta 2 (ADRB2) in GIST. Methods: Immunohistochemistry was used to evaluate the expression of ADRB2 in GIST tissues. The biological effects of ADRB2 on GIST cell proliferation, migration, invasion, and apoptosis were explored using Cell Counting Kit -8, plate colony formation assay, transwell invasion assay, and flow cytometry. We also explored the growth and metastasis of xenograft tumors in nude mice. Western blotting was used to quantify protein expression and phosphorylation. Results: ADRB2 is generally highly expressed in GIST. High ADRB2 expression was significantly associated with risk level, tumor size, mitotic count, and metastasis. Overexpression of ADRB2 promoted GIST cell proliferation, migration, invasion, and apoptosis, while silencing ADRB2 expression showed the opposite effects. Furthermore, we found that silencing endogenous ADRB2 inhibited GIST progression and metastasis in nude mice. ADRB2-induced ETV1 upregulation enhanced the activation of c-KIT. Conclusion: ADRB2 plays an important role in the proliferation and metastasis of GIST and is expected to be a potential target for the treatment of GIST.

7.
Cell Mol Gastroenterol Hepatol ; 11(4): 1119-1138, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33249238

RESUMO

BACKGROUND & AIMS: Histidine decarboxylase (HDC), the histamine-synthesizing enzyme, is expressed in a subset of myeloid cells but also marks quiescent myeloid-biased hematopoietic stem cells (MB-HSCs) that are activated upon myeloid demand injury. However, the role of MB-HSCs in dextran sulfate sodium (DSS)-induced acute colitis has not been addressed. METHODS: We investigated HDC+ MB-HSCs and myeloid cells by flow cytometry in acute intestinal inflammation by treating HDC-green fluorescent protein (GFP) male mice with 5% DSS at various time points. HDC+ myeloid cells in the colon also were analyzed by flow cytometry and immunofluorescence staining. Knockout of the HDC gene by using HDC-/-; HDC-GFP and ablation of HDC+ myeloid cells by using HDC-GFP; HDC-tamoxifen-inducible recombinase Cre system; diphtheria toxin receptor (DTR) mice was performed. The role of H2-receptor signaling in acute colitis was addressed by treatment of DSS-treated mice with the H2 agonist dimaprit dihydrochloride. Kaplan-Meier survival analysis was performed to assess the effect on survival. RESULTS: In acute colitis, rapid activation and expansion of MB-HSC from bone marrow was evident early on, followed by a gradual depletion, resulting in profound HSC exhaustion, accompanied by infiltration of the colon by increased HDC+ myeloid cells. Knockout of the HDC gene and ablation of HDC+ myeloid cells enhance the early depletion of HDC+ MB-HSC, and treatment with H2-receptor agonist ameliorates the depletion of MB-HSCs and resulted in significantly increased survival of HDC-GFP mice with acute colitis. CONCLUSIONS: Exhaustion of bone marrow MB-HSCs contributes to the progression of DSS-induced acute colitis, and preservation of quiescence of MB-HSCs by the H2-receptor agonist significantly enhances survival, suggesting the potential for therapeutic utility.


Assuntos
Medula Óssea/patologia , Colite/patologia , Células-Tronco Hematopoéticas/patologia , Histamina/metabolismo , Histidina Descarboxilase/fisiologia , Inflamação/patologia , Intestinos/patologia , Células Mieloides/patologia , Animais , Medula Óssea/imunologia , Medula Óssea/metabolismo , Colite/etiologia , Colite/metabolismo , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Intestinos/imunologia , Intestinos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/imunologia , Células Mieloides/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...